7 s
AD-A125 627 INTERACTIVE COMPUTER PROGRAM DEVELOPMENT SYSTEM STUDY 171
VOLUME 2 SYSTEM/SUB..(U) GENERAL DYNAMICS FORT WORTH TX
' FORT WORTH DIV H C CONN ET AL. JAN 83 DMA-2-014-VOL-2
UNCLASSIFIED RADC-TR-83-3-VOL-2 F30602-81-C-0039 F/G 9/2 NL

— e ——— e ———

e . . ——— .

L]
| PR] 2.5
1.0 w I &
— p: I3.2 m‘2 2
= 40 20
Lo F——
. B b e
|||||—‘ 8
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1963 A
, e DRI R T Y Harh ot e £FE e e . it s

g e e A ey

. Actisg Chief, Plans Office

’ .
Lt

— e ——— = e

[

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dl(l‘Enllr.d)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-83-3, Vol II (of three)

5. TYPE OF REPQRT & PERIOC COVERED

Final Technical Report

4. TITLE (and Subtitie)

INTERACTIVE COMPUTER PROGRAM DEVELOPMENT
oo T i s

. . MIN . REPORT NUMBER
System/Subsystem Specification DMA—2-014
7: AUTHOR(E) 8. CONTRACT OR GRANT NUMBER(s)
H.C. Conn, Jr. R.M. Bond
D.J. Rodjak C.G. Anderson F30602-81-C-0039
M.A. Goode R.C. Robertson
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL EMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS
General Dynamics/DSD/Central Center
637018

North Grant Lane 32050326
IFL Worth X 76103
1t. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE

Rome Air Development Center (COEE) {?nsziiniz%icss

Griffiss AFB NY 13441 60

T4. MONI{TORING AGENCY NAME & ADDRESS(I{ different from Concroiling Oftice) 18. SECURITY CLASS. (of thia repart)

Same UNCLASSIFIED

18s. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

186. DISTRIBUTION STATEMENT /of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, il different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Roger Panara (COEE)

19. XEY W#ORDS (Continue on reverse s:de ([necessary and identify by block number)
Software Engineering

programming environment

sof tware tools

20. ABSTRACT /Continue on reverse side ! necessary and identily by diock number)

Vol I (of three) describes the development of the design and supporting
documentation for an incremental and evolving integrated modern engineering
software production environment for the Defense Mapping Agency.

Vol II is the System/Subsystem Specification.

Vol I1II is the Functional Description.

DD 537", 1473 =oimion oF 1 nov 83 1S 0BsOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE "When Date Entered)

&4
)
v
4
3

s s e s e -~ m

O N

1
1
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
y
5

® 4 6 & 5 0 & 0 ¢ 2 0 0 &t s 0 @
VEWNNNDNNONNNONNNNNNNOND @ W RN - w N
o o .)
— N -
[T

NoOonME EE S WN

s & s o 8 o
® 6 ¢ & » 0 & ¢ s
DN e o ek e d md D D d b ad
¢ o & & s e

(]
-—

. . [

SYSTEM/SUBSYSTEM SPECIFICATION
TABLE OF CONTENTS

Title Page
GENERAL 4
Purpose of the System/Subsysten
Specification 4
Project References 5
Terms and Abbreviations 7
SUMMARY OF REQUIREMENTS 8
System/Subsystem Description 8
System/Subsystem Functions 11
Accuracy and validity 12
Timing 12
Flexibility 12
ENVIRONMENT 14
Equipment Environment 14
VAX Environment 14
Support Software Environment 20
VAX Software Tools 27
DMATRAN (IFTRAN) /FORTRAN 77/COBOL 74 27
USE.IT 28
SDDL 30
Is/1 33
.1 INed 39
.2 INword 39
.3 SCCs 43
FAVS/RXVP8BO 44
Cavs 46
VUE 48
Gen=ral Support 49
HYPERGRAPHICS 49
Interfaces 52
Security and Privacy 52
Controls 52
DESIGN DETAILS 54
DISTRIBUTION AND ADDRESSEES 55
‘ i
Z F?
i Tie /
boaca ty Jene

e ey #vunn o

SYSTEM/SUBSYSTEM SPECIFICATION

‘ FIGURES
;
4 Number Iitle
2.1 Near-Term System Configuration for DMA Modern
Programming Environment 9
3.1 VAX-11/780 System Configuration 14
3.2 Technical Specifications for VAX-11,/780 Processor 15
3.3 MPE Proj=2ct Management Overview 21
; 3.4 MPE Usage Scenarios Overview 23
f 3.5 MPE Usag2 Scenarios 24
' 3.6 A Life Cycle Model Scenario Employing USE.IT 29
! 3.7 Hierarchical Data Development and Communication 30
3.8 SDDL Software Design Process 32
3.9 IS/1 Commands and Programs 36
3.10 INword Features 41
3.11 INword Utilities 42
3.12 Steps in Validating a Program with FAVS
or RXVPS8O 44
3.13 Software Analysis and Testing Augmented by FAVS
or RXVP8O 45
3.74 CAVS Use in Developing Systems u7
3.15 HYPERGRAPHICS Command List 50

FRECEDING PAGE BLANK-NOT FILMED

SECTION 1. GENERAL

1.1 _Purpose_ of _the _System/Subsystem _Specificatjon. This
report is the Systam/Subsystem Specification, contract data
regquirements 1list (CPRL) item AQ07, produced as part of the
Interactive Computer Program Development System Study for the

Defense Mapping Agancy (DMA).

The purpose of this document is to provide a technical
Qescription of the components of the recommended near-term
DMA wmodern programming environment (MPE).. (See Final Report
for a complete explanagign_gi_ghg_ggglntioﬁ of the near-term
MPE recommendation.) ,This document includes descriptions of
the DMA MPE tool bearing host (TBH) and software 1life cycle
tool support environment for the near-term MPE configuration.
The tools described are the ones which best satisfied the
reguirements and constraints of the DMA environment at the
time this document was produced. The implementation of this
system should have the recommended tools or equivalent tools
vhich satisfy the criteria and constraints of the DMA MPE.
Only the FORTRAN and COBOL languages are addressed i» this
document.
r\

9
{
-

a. FEDSIM (Federal Computer Performance Evaluation and
Simulation Center) 1Installation Review - DMAHTC,
November 1980

b. FEDSIM Installation Review - DMAAC, August 1980
c. FEDSIM Optimization and Error Rate Studies, February 1981

d. Statement of Operation Need and 3System Operational

Concept, CDRL A002 for contract no. F30602-81-C-0039 -
i Interactive Computer Program Development System Study,
February 1982

e. Tool Evaluation Plan, CDRL A003 for contract no. F30602-
81-C-0039 - 1Interactive Computer Program Development
System Study, Septeaber 1981

f. Tool Survey, CDRL AOQO4 for contract no., F30602-81-C-
0039, Interactive Computer Program Development System
Study, Februwary, 1982

g. Alternative Aralysis, CDRL A00S5 for contract no. F30602-
81-C-0039, Interactive Computer Progran Development
System Study, March, 1982 .

h. Functional Description, CDRL A006 for contract no.
F30602-81-C-0039, Interactive Computer Program
Development System Study, March, 1982

i. RADC-TR-78-268 Volume II (of three) FAVS Fortran
Automated Verification System Users Manual

j. CR-2-970 CAVS COBOL Automated Verification Systen
Functional Descripion, November, 1980

] k. A Microcomputer Based Classroom Lecture System By Thomas
C. Irby and Darrell Ward, North Texas State University,
Dept. of Computer Science

l. Interactive Systems Corporation:

1) IS/1 Workbench Programmers Manual for VAX/VHMS

2) IS/1 Workbench Users Guide for VAX/VMS

3) IS/1 Text Processing Manual

 —a

- . a e o s - T e pa S '

N aa ey e “— " T

¢ . ’ ' .» " . - ., il) A 4) - N ‘

4) Interactive Systens Corporation Software
Product Descriptions

m. Digital Bquipment Corporation (DEC):
; 1 VAX Architecture

| 2) VAX Hardware Handbook

3) VAX Software Handbook

n. Higher oOrder Software (HOS), Cambridge, MA. Product
Descriptions:

1) USE.IT

0. Science Applications, Inc (S.A.I.):

1) SDDL

P. General Research Corporation, Santa Barbara, CA. Users
Manuals.

1) IFTRAN

2) RXVP8O

f el cebe—a—. . o~ e —

ANSI
APL
ASCII
CDRL
(o Ji]
CRT
DCL
nDP
DEC
DMA
DMAAC
DMAHQ
DMAHTC

DNA
FAVS
PCN
FEDSIN

FTN77
GD/DSD
HOL
HOS
Is/1
LAN
MB
MGT
MPE
PDAY
PWB
RADC
RAT
RJE
ROM
SCCS
SDD
SDDL
TBH
UNIX
VHMsS
WDCs

AMERICAN NATIONAL STANDARLCS INSTITUTE

A PROGRAMMING LANGUAGE

AMERICAN STANDARD CODE POR INFORMATION INTERCHANGE
CONTRACT DATA REQUIREMENTS LIST

CENTRAL PROCESSING UNIT

CATHODE RAY TUBE

DIGITAL COMMAND LANGUAGE

DISTRIBUTED DATA PROCESSING

DIGITAL EQUIPMENT CORPORATION

DEFENSE MAPPING AGENCY

DEFENSE MAPPING AGENCY AEROSPACE CENTER
DEFENSE MAPPING AGENCY HEADQUARTERS
DEFENSE MAPPING AGENCY HYDROGRAPHIC/
TOPOGRAPHIC CENTER

DIGITAL NETWORK ARCHITECTURES

FORTRAN AUTOMATED VERIFICATION SYSTEM
FUNCTION

FEDERAL COMPUTER PERFORMANCE AFD EVALUATION
AND SIMULATION CENTER

FORTRAN 77

GENERAL DYNAMICS/DATA SYSTEMS DIVISION
HIGH ORDER LANGUAGE

HIGHER ORDER SOFTWARE

INTERACTIVE SYSTEMS/ONE

LOCAL AREA NETWORK

MEGABYTE

MANAGEMENT

MODERN PROGRAMMING ENVIRONMENT

PARTIAL DAY

PROGRAMMER'S WORK BENCH

ROME AIR DEVELOPMENT CENTER

RESOURCE ALLOCATION TOOL

REMOTE JOB ENTRY

READ ONLY MEMORY

SOURCE CODE CONTROL SYSTEM

SOFTWARE DESIGN AND DOCUMENTATION
SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE
TOOL BEARING HOST

TRADEMARK OF BELL LABORATORIES (OPERATING SYSTEM)
VIRTUAL MEMORY SYSTEM

WRITABLE DIAGNOSTIC CONTROL STORE

L._’“...

e

SECTION 2. SUMMARY OF REQUIREMENTS

2:1_System/Subsystem Description. The near-term systenm
design was developed, through the process described in
Section 15 of the FPinal Report , to meet the immediate needs
of DMA. The near-term MPE is based upon a VAX used as a
front-end softwvarz development environment to a production
UNIVAC mainframe as described in PFigqure 2.1, This con-
figuration providss a software development capability with
minimum schedule and technical risk at low cost. As defined,
the system has a high probability for improving productivity.
The MPE supports all life cycle development phases and the
maintenance and project management fanctions. In this
document 'maintenance functions' is defined as post produc-
tion software development activity requiring work in one or
more phases of the 1life cycle: requirenents, design,
programming, and testing. These would include activities
such as the correction of software errors discovered 1in
production programs and modifications or upgrades to programs
already on production status.

oy

— . .

N

TOOL BEARING ROST : VAX 11/780

TooL LIFE CYCLE PHASE SUPPORTED
o USE.IT o Requirements, Design
& Coding
e BDDL e Design
@ DMATRAN/IFIRAN | @ Coding
® FORTRAN 77 e Coding
e COBOL 74 e Coding
e FAVS /RXVP80 e Testing
e CAVS e Testing
e 18/1 e Maintenance
MPE ADMINISTRATOR
- INword « Documentation -Project Management
- INed - Text editing
o HYPERGRAPHICS - Training
- - Co
PVB (sCCS) nfiguration Control (on Apple Microsystems
e VUE ® Project Mapagement
COMMUNICATIONS
LINK ¥ \\
UNIVAC PRODUCTION MAINFRAME]
Pigure 2.1 Near-Term System Configuration for DMA Modern

Programaing Environasent

2. i3

e a hadkan

A VAX-11,/780 will be utilized to host a FORTRAN and COBOL
software development system to support the reguirements,
design, programming, testing and maintenance phases of the
software developm=2nt 1life cycle as well as project
management. An overview of the specific support provided by
this proposed systzm is given in the following paragraphs.

The AXES portion of the USE.IT tool will functionally support
the specification and analysis of the requirements of

programs. Certain categories of programs will also be
developed within the USE.IT 1life cycle and supporting
library. The design of the remaining categories of prograas

will require the generation of a software design document
through the use of the Software Design and Documentation
Language (SDDL). Definitions of the S5 categories of software
development and their associated MPE usage scenarios are found
in Section 3.2 of this report.

All coding will b2 accomplished in DMATRAN (or its commercial
version IFTRAN), ANSI X3.9-1978 FORTRAN (77) or ANSI X3.23-
1974 COBOL (74). FORTRAN 77 and COBOL 74 will serve as a
common interface bstween the VAX software development machine
and the production UNIVAC mainframe to which source code of
completed programs will be sent for final compilation and
production status. Testing and optimization of programs will
be performed on the VAX using the FORTRAN Automated
Verification system (FAVS), or its commercial version RXVPS8O,
for FORTRAN 77 programs and the COBOL Automated Verification
System (CAVS) for COBOL 74 programs. Additionally on the VAX
will reside a configuration of the Interactive Systems/One
(IS/1) system supporting documentation, text editing, and the
configuration control function of the maintenance phase,

Additional non-hosted support will be required. The MPE ad-
ministrator and toolsmith functions will support the project
management function as well as system management; and
HYPERGRAPHICS, a tool for building presentations, lectures or
interactive 1lessons will be utilized for training purposes.
The selection of HYPERGRAPHICS is based on its simplicity in
use as well as cost and availability. The generation of
visual material to support a training document is easily per-
formed and maintained.

The VAX and UNIVAC computers will need to be connected
through a communications link described in Sections 2.2 and
3.3. To support users in a timely manner and to provide
adejuate access, multiple VAX computers will be requiread. A
recommendation of three identically configured systems at
each center is explained in Section 16.2 of the Final Report.
Additionally, the VAX's within each center will be connected

10

through the DECnet Local Area Network (LAN) thus providing
intra-system communications and back-up capabilities for the
development systenms.

2.2 _System/Subsystem__Functions. The near-term MPE functions
as a tool to provide 1life cycle support to the software
development process. In the f£d5lloving paragraphs the in-
dividual functions of each major element will be described as

vell as the function of the aggregate.

A VAX-11,/780 computer will be utilized to support
requirements specifications, design, coding (data entry and
analysis), documentation, testing, configuration control, and
project management. The computer will support multiple ter-
minals ovar a range of geographic locations, depending upon
the communication and protocol utilized.

The specification and documentation of the requirements of a
computer program will be partially automated through the use
of USE.IT. This tool will allow the interactive development
of a requirements specification document wusing a defined
methodology, and analysis of the specification for data flow
and control sequences. When the program specified can be
categorized to fit within certain constraints, other
facilities of the USE.IT tool can be used which will directly
generate a high order language (HOL) program to accomplish
the specified task.

The design of remaining programs will be accomplished
utilizing SDDL. Whether the task is accomplished by an in-
dividuval or a tesam, the tool will provide precise, accurate
and orderly transitions between requirements, design and
coding activities as well as intra-design activities. The
tool ©provides, through a . prescribed methodology, the
capability to describe the design in simple, understandable
constructs; allow for checking of the design constructs; and
translate the d2sigyn into a readable design document.

Data entry will be performed interactively when generating
new code or documentation. This activity will be supported
by the state-of-the-art word processing and text editing
capabilities of the IS/1 Programmer's Work Bench (PWB). When
new code is being generated, a compiler must be resident for
syntactical and semantic analysis prior to the test and inte-
gration phases This will require FORTRAN 77 and COBOL 74
compilers to be resident on all VAX's.

FAVS (or RXVP80) and CAVS will provide static and dynamic
analysis of the specified HOL source code including usage,
path flow and coverage statistics. Additional capabilities

11

to enhance documentation, such as the output of cross-
reference tables and summé v data or pretty-printing the
source input, will also be included. Note that RXVPBO is the
commercial version of FAVS, Though they possess the sare
basic capabilities as outlined above, there are differences.

Configuration control will be supported through the use of
SCCS. The configuration management of HOL code and support
documentation, including on-line requirements and design in-
formation and test data, will be provided.

Project management will be supported through the use of VUE.
This tool performs resource allocation and analysis, time and
cost analysis, and report processing.

Due to the complexity of the proposed near-term environment,
the evolutionary process required to achieve the far-term
environment, and a need for a focal point for
identification/resolution of problems, support tools must be
provided outside the development environment.

The MPE administrator and toolsmith functions will be
staffed positions primarily serving as the focal point for
management to observe the system activities and as a source
of information for MPE training activities. Tasks will in-
clude performing error rate studies, helping programmers with
MPE usage questions/problems and the identification of needs
not satisfied within the user/management communities.

HYPERGRAPHICS, an off-line training tool, will be used to
support training functions. This will provide 1lovw cost
training to personnel outside the production environment.

Communication 1links will be established between the VAX
11/780's and mainframe computer. The VAX's will also be
linked through a DECnet LAN.

2.2.1____Accuracy _and Validity. This section does not apply
to this specification.

2.2.2_ __ _Timing. This section does not apply to this
specification,

2:3______Flexibility. This section does not apply to this
specification.

12

SECTIGON 3. ENVIRONMENT

3.1 _Equipment Environment. This section provides a descrip-
tion of the new equipment required for the operation of the
near-term MPE.

3.1.1 VAX Environment. The VAX equipment environment will
consist of three VAX-11/780's, as specified in the Final
Report and described in Fiqgure 3.2. Each system will have
interactive terminals (INtext II's and VT100*'s, with
Retrographics) 1located within 1000 feet of the host machine
and multiport memory consisting of 2 megabytes of smemory.
Additional recommendations are eleven removable disk packs
and 50 tapes per VAX. The system configuration (SV-AXDBC-CA
with additions) 1is presented in Figure 3.1 and will require
70 square feet of space for system cabinets and the console
terminal.

L L-L.)
TR RS AP TIN A
)
-
"
R 10erren nty

»
i
L

i

ST LTS |
Pigure 3.1 VAX-11/780 System Configuration

13

A ZR——

Central Processing Dnit

Processor Type Microprograsmed, 99-bit control
store wvord
Microcontrol store instruction time
200 nanoseconds
Control store size -~ 5K wvords
{99-bit vords), 4K wvords ROH,
and 1K vords WDCS

Internal data path 32 bits
‘ CPU_Cache Mepmory
Size BK bytes, bipolar with parity
Bffective main memory 1800 nanoseconds/64 bits
cycle time
Typical hit ratio 95%
Typical cache cycle 290 nanoseconds
time

CPU_Address _Translatjon Buffer

Size 128 address translations
Typical hit ratio 97%

CPU_Clocks

Real-time clock Ccrystal controlled, .01%

accuracy ‘1-microsecond resolution

Time-of-year clock Includes recharging battery
backup for over 100 hours

YAX lostruction Set 16 32-bit registers
248 basic operations
32 priority interrupt levels

Bultiple data types Integer, floating point,
packed decimal, character

: string, variable bit fields,

and numeric strings

PDP~-11 compatibility mode

instructions

Addressing sodes 9 f

Pigure 3.2 Technical Specifications for VAX-11/780 Processor
(page 1 of 5)

——— — s

i 14

Other_featyres

Bain_Memory
Physical address lines

Physical expansion

Parity

Technology

Cycle times

Power failure
protection

Pover fail/automatic restart,
Single serial line ASCII console
interface,

8-line communications multiplixers
D2-11a, DZ-11B, DZ-11E;

RX01 floppy disk drive with
LSI-11 microcoaputer,

Writable Diagnostic Control
Store (WDCS),

Serial line unit for

remote diagnostics,

Virtual console commands

from LA120 terminal

1 billion bytes (30 bits)
8 megabytes in Z56K-byte increments

8-bit error correcting code
(ECC) per 64-bit quadword

16K-bit dynanmic RANs

(200 nanosecond access time)

800 nanoseconds per 64-bit read
(1300 nanoseconds vith single-bit
errors)

1400 nanoseconds per 6u-bit

vrite

Optional battery backup

1/Q_UNIBUS Adapter (1 standard)

Maximum OUNIBUS I/O
rate

Buffered data paths
Maximue nusber of
bus loads

Interrupts

Figure 3.2 Technical

1.5 Bb/sec through buffered
data paths

15 total, 8-byte buffer
in each

18 vithout a repeater

Directly vectored via UNIBUS
adapter

Specifications for VAX-11/780 Processor
{page 2 of 5)

15

o+ o A R - RS i

1 Hemory Battery Backup
Hinimum backup time 10 minutes
Electrical Pover Reguirements
AC line voltage 1207208V
Pregquency tolerance 59-61 Hz
!
! Phases 3 phase

phase A: 11.2A max. continuous
! phase B: 9.9 A sax. continuous
phase C: 13.1 A max. continuous
neutral: 1t4.4 A max. continuous

AC cable length 3 m (9.84 ft.) from back
of cabinet

Maximum ac power 6225 watts

consumption

Iypical_Power Regqujirements _and Therpal Dissipation

Pully configured 1800 watts 6140 BTU/hr. |
aultiport memory 1550 kcal/hr.
Envigonment
Operating: .
Teaperature 159 to 32°C
(59° to 90°FP)
Relative humidity 20% to 80%
Nonoperating:
Teaperature -40° to 66°C

{-40°% to 1519F)

T Relative humidity 0 to 95%

! : Ploating_Point Acgelerator

Enhances performance of all floating point instructions
(single and double precision) including polypomial

, evaluation, integer/floating conversions, 8-, 16-,

and 32-bit integer multiply.

e B s

Pigure 3.2 Technical specifications for VAX-11/780 Processor
(page 3 of 5)

16

Y

Fery

. —t

TEU77 tape transport device:

Progranm selectable, 8001600 bpi, 9-track, 125 in/sec
automatic loading magnetic tape transport.

INtext II terminal:

INtext II is th2 INTERACTIVE, 1Inc. text editing terminal
based on the Perkin-Elmer 1251 terminal. The terminal
features a video display of 24 lines with 80 characters each.
ASCII text and graphic symbols may be displayed, and a line-
drawing option is provided. The screen is 12 inches along
the diagonal and is hooded to improve readability. INtext II
has a tiltable screen and a detachable keyboard. The ter-
minal can communicate with a coaputer at speeds ranging from
75 to 9600 baud. INtext II is configured with special mi-
crocode to optimize operation with the text editor 1INed.
Many of the functions normally performed by the host CPU are
done locally in the INtext II microcode; allowing the host
CPU to support more editing stations. INtext II may also be
used as a standard ASCII terminal. Terminal parameters can
be set for ANSI, VT100, VTS52, or dumb modes. INtext II has
labeled function keys corresponding to specific functions
found in INTERACTIVE's screen editor, INed.

VT100 terminal (with Retrographics VT640):

The VT100 is a high performance video display terminal which
provides wmaximum flexibility. SET-UP features including
scroll mode, auto repeat, background, cursor style, margin
bell, key click, and 80 or 132 columns allow the terminal to
be confiqured to operator preference and provide com-
patibility with th2 host computer.

The Retrographics VT640 enhancement, a product of Digital
Engineering, requires no software modifications and delivers
full graphics capabilities without diminishing the features
of the DEC VT100.

REMOS disk drive:
The REMOS5 is a single access 256MB removable disk pack drive
with one disk pack supplied. The transfer rate is 1.2MB/sec

peak with an averaje access time of 38.3 msec.

Figure 3.2 Technical Specifications for VAX-11/780 Processor
(page 4 of 5)

17

.

DUP11 communications device:

The DUP11 is a single-line, program controlled, double-
buffered communications device. The self-contained unit is
capable of handling a wide variety of protocols, byte and bit
oriented. The DUP11 can also be used in conjunction with
customized code for unique applications.

MUX 200/VvaX multiterminal emulator:

MOX200/VAX is a software package that allows data files to be
transferred by emulating CDC's 2000T Mode 4A communications
protocol, User's may choose ASCII or BCD character codes for
transmission. Using interactive terminals, users can coa-
municate with the host system at command level or can send or
receive batch processing jobs. The VAX-11 terminals appear
as 2000T terminals to the host computer. Users communicate
with the host computer over a single synchronous com-
munications 1line capable of operating at speeds up to 9600
bits per second. The host computer views the MUX200/VAX line
as 16 multidropped 200UT terminals. Features include detec-
tion of user-defined strings that permit the VAX-11 to spool
output data received from the host system to a line printer;
transmission of up to 8 data files to the host with a single
command; and the capability to support local data processing

on the VAX while operating independently of the comunications
link.

DECnet-VAX

DECnet-VAX allows a suitably configured VAX/VMS system to
participate as a Phase III DECnet node in computer networks.
DECnet-VAX offers task-to-task communications, network file
transfer, adaptive path routing, network management, and
network resource access capabilities (including Network
Command Terminals) using the DIGITAL Network Architecture
(DNA) protocols. DECnet-VAX communicates with adjacent and

non-adjacent Phase III nodes over synchronous communication
lines.

Figure 3.2 Technical Specifications for VAX-11/780 Processor

(page 5 of 5)

3.2_Support__sSoftware__Environment. This section provides a
description of the support software with which the user of
the near-term MPE must interact. This includes descriptions
of the various categories of software development existing at

DMA and how each would interact with the recommended MPE.

All software development is monitored through the use of the
project management tool, VUOE., Examples of the inputs and
outputs of VUE are illustrated in Figure 3.3. Upon receiving
a job request, VUE is initiated for the job, and at various
points in the scenarios, VUE is updated to reflect pertinent
decisions and actions.

ROTAIDA0 3udwabeuey 308foig F4qu €°¢ @anb1y

4dR uo
3833 jo sniwle -

83A3322{q0 BSupisay
Aiwurwyyaag Yupisay [eus

jo sn3wys -

2391dwo) 3dafoag

Toul] ¢ wjraad -
&ouapuadap aupyoew -
£dwandow -
SJUFRIISUOD 22§89 -

FRECEDING PAGE BLANK-NOT FILMED

SJUTEIISUOD padds - 83 INpIYIs
83a3333{q0 38} 933wy iug -
330day ssai1801g
9 yion Fu3aany
1 Suj3unodIy 180)
83a0day £3yA7d¥
S 8330d3y ¥danosay
sapoN YSTuTd PUP 31wag ~ L
) - Jdoday Mgu”vowﬂhm o1
23334 03 saujINOI - 329fo3g 21735 IPon
pasn afenusy - v sads ApUIT®)
sasjameing ana
TeUOT JUIAUO) 833048y .
- / Jusmafvuny
1
[4

paiynbai sapou -

paen sj003 -

W@dpnq -

38042 03 siojwiado - poudtese am.u.”““wu H

2 .
81ajampawg 11°3SN puojiaod Sujssje - uoyIWFIJUl qor
JPWI0J JUIIIND -
s12]13mB19g
uofIRIVIEMNDOQ B

C—

The usage of tools in the MPE is best discussed in terms of
scenarios. For purposes of discussion, scenarios will be
considered for the following categories of software
development:

1. maintenance of existing software which has not been
upgraded through the Software Improvement Program
(sIP), (pPart of this program consists of an effort to
improve existing UNIVAC software.)

2. maintenance of existing software which has been SIP
upgraded,

3. software under development, for which standards were
not specified

4., new software to be develuped by DMA, for which
standards are to be specified, and

5. new software to be developed by contractor, for which
standards are to be specified.

The techniques discussed are intended to demonstrate the ap-
plicability of the recommended tools to the various
scenarios. Specific usage methodologies will be developed
during the MPE system implementation as outlined in Section
19.1 of the Final Report.

Application of the MPE tools to the DMA software scenarios is
illustrated in Figures 3.4 and 3.5.

22

{ START

‘ 1
SCENARIO

DETERMINATION

v

TOOLS
APPROACH .

v

SOFTWARE
TESTING

v

STOP

Figure 3.4 MPE Usage Scenarios Overview

« —

23

Software
4

™, Task
\,

Scenarios #4 § #5

Maintenance

Retrieve on-line documentation :
‘ "l and configuration controlled "

Scenaric

_Number Description
1 Existing softwvare not SIP upgraded
2 Existing software upgraded by SIP
3 Software presently under development
4 Nev in-house software
5 Nev contracted software

Scenario #3

Softwar
Developed
Using MPE

Scenario 1

Modify code to
ANSI Standards

v N

Scenario #2 Put documentation
on-line

Has Been SIP

v

&2

items with IS/1

Figure 3.5 MPE Usage Scenarios
(page 1 of 2)

24

B P

Ormmventionsl Tesds
dutenstic Pregramming

Update requirements|

l Pnct (onal Decenposition of
Toquiremnmts vis USE.IT

-4 gemerate ande
with USE.XT

y_

| Create/Update dasign .-TI
with SDOL

=it testing with
PAVS/RXVPHO, CAVS or (APSE.

Represents data monitoring points
that ioterface with the project
Sanagemant tool WUR

Job In{tiation

L
Automatic Programming Parameters
Conventicnal Parsmeters

Test Cbjectives

Prelininsry Test Objectives
Project: Complete

NOLS W

Updste ou lime docsmmtatise
esutrol with 18/1

md place wmder contiguratise

Figure 3.5

MPE Usage Scenarios
(page 2 of 2)

P———'—'

a e d . b . o = e aay o e o

Upon receiving a job request, the project management tool,
VUE, is initiated for the job and at various points in the
scenarios, the project nmanagement system is updated to re-
flect pertinent decisions and actions.

Within the defined scenarios, one of two basic tool ap-
proaches will be followed.

The first, referred to as the ‘“automatic programming
approach", will make repeated use of the subsets of the tool
USE.IT until performance criteria are achieved. The usage of
the various subsets is as follows:

- the USE.IT graphics editor is used to enter progranm
structures, called control maps, to functionally
decompose requirements and design specifications as
well as changes, if any, which are required as a result
of performance testing,

- the Analyzer verfies internal consistency and
interfaces,

- the Resource Allocation Tool (RAT) automatically
produces programs from Analyzer output,

- source produced by the RAT is compiled and linked, and

- the system is performance tested to determine
acceptability.

Failure to pass performance testing results in repetition
of these steps until criteria are satisfied.

There appears to be no restriction on the size of system
which may be developed with USE.IT. As systems are developed
via USE.IT, generic operations are developed and placed in a
library for use as building blocks on subsequent systems.
For this reason, detailed documentation within AXES
statements is considered mandatory.

The second, referrad to as the "conventional tools approach",
will make use of the USE.IT, SDDL, DMATRAN/IFTRAN or FORTRAN
or COBOL, ani FAVS/RXVPB0 or CAVS tools through the life
cycle. Utilization of tools in the “"conventional tools
approach" consists of repeated application of the following
procedures until performance criteria are achieved.

- The USE.IT graphics editor is used to functionally
decompose reguirements specifications.

26

i o miibalh,

e il

- SDDL is used to originate the design or make design
changes, if any, which were mandated as a result of
performance testing.

-~ Source code (DMATRAN/IFTRAN, FORTRAN or COBOL) is
modified to reflect changes brought about by design
changes, performance changes, or FAVS/RXVP80 or CAVS
evaluation,

~ FAVS/RXVP8B0 or CAVS are envoked to detect syntax
errors, perform static analysis, and perform
execution analysis.

- Performance testing is evaluated to establish the
acceptability of the system. Failare to pass
performance testing results in repeating the process.

One of these tool application approaches is followed until
the preliminary test objectives are met. At this time,

the source 1is transmitted via data link to the target host
for final testing.

While testing on the target host, the project management sys-

tem is apprised of the test status. Upon successful com-
pletion of final test objectives, Jjob completion data is
processed by the project management systen. This action

prevents the system status from being obscured from control
and insures a match between production software and the as-
sociated documentation. Target host test objectives will
verify proper usage of machine dependent devices, software
and technigques. Once final testing is completed and the sys-
tem is ready for production status, on-line documentation
such as requirem2nts and design documents, source code and
test data should be updated and placed wunder configuration
control using SCCS of the IS/1 PWB.

21 VAX__Software Tools. This section provides descrip-
ns of the VAX hosted software tools in the Near-Term MPE.

3.2
tio

i
3.2.1.1__DMATRAN(IFTRAN) /FORTRAN_77/COBOL_J4. Coding will be
accomplished in DMATRAN(IFTRAN), PFORTRAN 77 or COBOL 74,
DMATRAN (or its commercial version IFTRAN) is an extension to
FORTRAN that allows the use of the SEQUENCE, DOWHILE,
DOUNTIL, IFTHENELSE, and CASE control constructs. The
DMATRAN (IFTRAN) precompiler translates the DMATRAN(IFTRAN)
statements into standard FORTRAN while passing all other
statements unchanged to a file which can then be compiled by
a FORTRAN compilar, In addition to the translation, the
precompiler checks the control structure for proper use of

27

e el i it

DMATRAN (IFTRAN) control structures and issues error messages
if violations occur.

The precompiler provides the following additional features to
improve code production:

1. Indented listing of the DMATRAN (IFTRAN) source code.

2. Editing functions which include in-line comaments,
double-spacing around comments, indentation control,
selective page ejection, and selective suppression
of the source listings,

FORTRAN 717 refars to the American National Standard
Programming Language FORTRAN, ANSI X3.9-1978 approved by the
American National Standards 1Insititute (ANSI) on April 3,
1978. This is the FORTRAN versjion currently in wuse (with
extensions) at both DMAAC and DMAHTC on their UNIVAC equip-
ment and supported on VAX-11/780 equipment. COBOL 74 refers
to the American National Standard Programming Language COBOL,
ANSI X3.23-1974 approved by ANSI.

3.2.1.2 USE.IT. Problem definition always occurs prior to
requirement specification, however, analysis of solvability
rarely occurs. One reason behind this fact is the labor in-
tensive characteristic of feasibility studies. A softwvare
tool, USE.IT, automates this process. The USE.IT software
system is an integrated set of tools for automating the sof-
tware 1lifecycle development process. Implementation of a
system is performed through the use of a user-selected syntax
language modeled with the Higher Order Software AXES language
interface. The us2r specifies the system components and
dataflow in a selected syntax; the AXES subsystem performs an
analysis of the spacification; and the Resource Allocation
Tool (RAT) generates a FORTRAN 66 program representing the
system. Future expansion of the USE.IT system is planned to
include the <capability to automatically generate code for
FORTRAN 77, COBOL, and Ada, from a single specification.
Fiqure 3.6 iliustrates the typical software lifecycle and the
software lifecycle as it would be if USE.IT were employed.

28

e — — e —
N N . . L - . . v .

s o

]ﬂ”«ﬂw.i

1I°3sn butkoydug otvaeuass tapoy a124)H 8311 V¥

9°¢ ainbty

SINTNA¥1NbIY
INZISISNOD (l¥04dNS JALLIVUZINI HLIM)
300D SZLVHAND SILVHANID SINAWZYIADAYN SALVNINTD
¥ALNHOD v
1 /Eusoo 4AZATVNY Saxv soads
wasn
*pv
(1EVIIVAV
e 99 NviLiod
10402
$S200¥d NOILINI43d SINTWGEWINDAY ANIT-NO
T300H 104D 2417 TVOINOLSIH
AONVIELINIVR ONILS3L

29

s SR

o ka

.

3.2.1.3 SDDL. The Software Design and Documentation
Language (SDDL) is a software support tool used to partially
automate the generation and checking of a software design
document, (SDD). An SDD is needed because a computer pro-
gramming language is a satisfactory communications medium for
only a few 1links in the software development process;

programmer-to-prograamer and programmer-to-machine. Other
links in the process include designer-to-programmer,
designer-to-designer, designer-to-manager, manager-to-

customer and customer-to-designer. This is a complex network
of information flow which usually requires multiple mediums
of communication. SDDL was developed by the Jet Propulsion
Laboratory to provide a single communication medium that
would be usable over all links except programmer-to-machine
(see Figure 3.7).

SDDL COMMUNICATION STAGE

STRUCTURAL
STAGE

IMPLEMENTATION
STAGE

EXECUTION
STAGE

MAINTENANCE

Pigure 3.7 Hierarchical Data Development and Communication

30

The objective of SDDL is to provide an effective coam-
munications medium to support the design and documentation of
complex software applications. This objective 1is met by
providing (1) a processor which can convert design
specifications into an intelligible, informative machine-
reproducible document, (2) a design and documentation 1lan-
guage with forms and syntax that are simple, unrestrictive,
and communicative, and (3) a methodology for effective use of
the lanquage and processor. The processor has the capability
to format documents, summarize design information in the form
of reports and handle various user-controlled directives.

SDDL 1is accessed interactively, but 1is a batch oriented
process. It is used to periodically generate a SDD which
will reflect the current status of the design process.
Information may be generated on variable usage, program
modules, changes to programs, management information and many
other states of the design as desired by the project tean
members. A programming language's structure and keywords may
even be modeled to an extent that very little effort would be
required to change the final SDD into source code.

The source language for SDDL was originally Simscript I1I1.5,
vhich was only available on large computers. Release version
four has been rehosted to a Harris computer using PASCAL as
the source and is rehostable to any computer system support-
ing Jensen and Wirth standard PASCAL which is supported by
the VaAX.

Utilization of SDDL is accomplished through a language syntax
that is simple and flexible. The SDDL processor reads a text
file phrased 1in the langquage, then reformats the file by
providing indentation, control flow lines, and user specified
Cross reference tables. The printed SDD contains the
reformatted input, a table of contents, and module hierarchy
reports. The indentation can be modeled by ucsing the struc-
tural keywords of a specific language. The exploitation of
these and other features of SDDL provides a vehicle for esta-
blishing standards and conventions 1in the design process.
Figure 3.8 provides a graphic illustration of the SDDL sof-
tware design process.

31

$S80014g n@..nmwa 2JeAl}]JOS 1ddgs

SNOILIGAY T S3ivadn)

YIINIONI

WY3IO0ud

¥011a3
Hhal

v
viva
NOjIsaa

o&

¥INOIS3a

¥OSSIDOWU
10aas

g°¢ @anbiy

INOISO

BIOVNWW

I

SINVL 438 S50

SANAIDOM
NNLONLS Vivae
SNOHLYI#1D)4S
LINIANOD O

‘SO TWNOILONNY
$SIAILDWNO
$INIINOD 40 1Wvi

ﬁ

INVNOOQ
NOIS3a
RNVYMLIOS

32

- .y — -

1
e e a—

[|

P > za

3.2.3.48__1Is/1. The IS/1 Workbench for the VAX is a facility
that provides a convenient working environment and a unifora
set of tools for computer program development, document
preparation and text processing. It is a general-purpose,
multi-user, interactive system based on Bell Laboratories?®
PWNB/UNIX system specifically engineered to make the
designer's, programmer's and documenter's environment simple,
efficient, flexible and productive. The system runs on
Digital Equipment Corporation's VAX-11/780 computer system as
a subsystem of the VAX/VM3 operating system. It contains

features such as:

o A hierarchical file systenm

o] A flexible, easy-to-use command language that
can be tailored to meet specific user needs

o The ability to execute sequential, asyrchronous
and background processes

o A line-oriented context editor

o A flexible document preparation and text
procassing systenm

o A high-level programming language conducive to
structured programming (C).

o] A variety of system programming tools

o The integration of the VAX/VMS and UNIX

environments, such that the look and feel of
UNIX is preserved while allowing access to VMS
when desired.

Because the 1S/1 Workbench for the VAX runs as a subsystem of
the VAX/VMS operating system provided by DEC, full access to
DEC software 1is available at all times. In particular, the
Workbench tools may be used to develop native mode VAX/VMS
programs. Compiled programs adhere to VAX object linkage and
calling sequence conventions., The C compiler, though not
recommended in the near-term environment, is provided with
the Workbench system, generates VAX native-mode code and
obeys VAX stack conventions. Moreover, the Workbench Command
Interpreter is capable of invoking native DEC utilities such
as the 1linker and FORTRAN, as well as Workbench utilities
with the same command language. Most Workbench programs can
be initiated directly by using the VAX/VMS DCL command inter-
preter as well as by using the Workbench command interpreter.
The file system provided by VAX/VMS is fully available to the
Workbench subsystam. This file system consists of direc-
tories and files arranged in a hierarchical structure. Some
of its features include:

o Simple and consistent naming conventions.
Names can be absolute or relative to any direc-
tory in the file system hierarchy.

33

o Automatic file space allocation and deal-
location that is transparent to users.

o A flaxible set of directory and file protection
nodes. All combinations of read, vwrite and
execute access are allowed independently for
the owner of each file or directory, for a
group of users (e.g., all members of a project)
and for all other users. Protection modes can
be set dynamically.

o Facilities for creating, accessing, moving and
processing files, directories or sets of these
in a simple, uniform and natural way.

o Files generated by the IS/1 Workbench for the
VAX are fully compatible with files generated
by VMS programs.

The command 1language of tke 1IS/% Workbench for the VAX
utilizes an extended version of the UNIX Shell (command lan-
guage interpreter). It contains extensions designed for use
within Shell procedures (command files) that improve its
usefulness to largz2 programming groups, and make it more con-
venient for use as a high-level programming language. By
utilizing the Sh211 as a programming lanquage, Workbench
users can eliminate a great deal of the programming tedium
that often accompanies a large project. Many manual
procedures can b2 quickly and conveniently automated.
Because it 1is easy to create and use Shell procedures, each
project that uses the 1IS/1 Workbench for the VAX can
customize the general Workbench environment into one tailored
to its own requirements, organizational structure and
terminology.

Features of thz2 Shell include:

o Ability to use any program as a command and to
supply it with arbitrary character string
arguments. File name arguments can be obtained
from a pattern matching operation on the names
of files in specified directories.

o Ability to execute from the Shell a progranm
that may be either an image to be executed, a
Shell command procedure or a DCL command
procedure.

34

o Redirection of standard input and output per-
mitting any program to run with file, terminal
or other device input/output.

j o Sequential execution of commands
z o Parallel execution of commands with the output
of one command connected to the input of
another. This command chaining, called

"pipelining", permits the construction of con-
plex operations from sequences of 1Is/

progranms.
o Ability to run commands in "background" mode.
o Conditional execution: if, then, else and while

constructious.

o String variables, and string and integer
operations on those variables.

In the 1IS/1 Workbench for the VAX, a word/text processing
system is provided that includes an editing system, a text
formatting system, and spelling and typographical error
detection facilities. The document preparation and text
processing facilities of the IS/1 Workbench for the VAX in-~
clude commands that automatically control pagination, style
of paragraphs, line justification, hyphenation, multi-column
pages, footnote placement, generation of marginal revision
bars, and generation of tables of contents. Documents
produced can includa letters, memoranda, legal briefs, or
specialized documents such as program run books. There are
also facilities for formatting complex tables and equations.

IS/1 is a tremendously powerful software manipulation en-
vironment easily and rapidly combining primitive operations
and commands. Rapid software prototyping and guick trial and
error software experimentation evolve as a natural outcome of
this ability to combine the various programs and commands
using pipelines and filters.

Figure 3.9 provides an overview of IS/1 commands and ap-
plication programs.

2 . . ; " De e

.
AP ST WP NP PR |

. , _ L e g) AN SNTPTg

COMMAND
abort
admin
ar
banner
bdiff
bfs
btt
cal
cat

cb

cc

cd
chghist
chmod
chown
cop
code
col
comb
comm

copy

cp

cref
crypt
date

dcl

del
delta
deroff
aft

ai

dict
diff
diffmark
du

ee

ec

echo

ed
edrestore

egn
equals
exit
fd2

abort the typing of a file

administer SCCS files

archive and library maintainer

print in block letters

big diff

big f£ile scanner

convert a binary file to text

print calendar

concatenate and print

C beautifier

C compiler

change working directory

change the history entry of an SCCS delta
change mode

change a files owner

compare two files

print characters with their octal equivalents
filter reverse line feeds

combine SCCS deltas

print lines common to two files

copy files and/or directories

copy

make cross reference listing
encode/decode

print and set the date

execute a DCL command from the Shell
delete files

make an SCCS delta

remove nroff, troff, and egn constructs
disk free

list contents of directory (verbose)
check spelling of words in a file
differential file comparator

mark changes between versions of a file
summarize disk usage

INed, the INTERACTIVE CRT text editor
encrypts/decrypt files

echo arguments

text editor

recover an ed session

typeset mathematics

Shell assignment commang

terminate Shell command file

redirect file descriptor 2 (diagnostic output)

Figure 3,9 1IS/71 Commands and Programs
(page 1 of 3)

36

—— v e S - -

ffill
find
fjust

gath
qet
goto
grep
help
if
INed
kill
killall
1

lex

1ls

mi
make
man

mc
mkdir
msg

nv
negjn
newbin
news
next
np
nroff
od
onintr
pack
pcat
pr
proofit
prt

DS

ptx
puap
pushes
pwd
gtype
ratfor
recover

DESCRIPTION

fill arbitrarily indented paragraphs of text
find files

£fill & justify arbitrarily indented paragraphs of text
foreign.conm

install a foreign command

gather real and virtual files
get generation from SCCS file
command transfer within a Shell procedure
search a file for a pattern

ask for help

conditional command

INTERACTIVE CRT text editor
terminate a process

kill all nonancestral processes
list with pagination

generate programs for simple lexical tasks
list contents of directory

macro processor

make a progran

print on-line documentation
multicolumnar filter

make a directory

read messages in

move or rename a file

typeset mathematics on terminal
rehash dirs in execution search sequence variable
print news itenms

new standard input

print the next page of file

text formatter

octal dump

handle interrupts in Shell files
compress files

expand and concatenate compressed files
print files

make a proof copy of documents
print SCCS file

process status

permuted index

Shell data transfer command
print readable version of
working directory name

quickly type a copy of document
rational FORTRAN dialect
retrieve lost

Figure 3.9 IS/1 Commands and Programs
(page 2 of 3)

37

N ATt i v ale

reforn
reqgcmp
rjestat
rn
radel
ramdir
rpl
sccsdiff
sed
send
set

sh
shift
sleep
sno
sort
space
split
stty
sum
switch
tab
tail
tbl
tee
time
to

tr
troff
ttab
type
typo
ufilter
unig
unpack
untab
vait
vC
vhat
whatsnew
while
who
write
yacc

Figure 3.9

DESCRIPTION

reformat text file

regular expression compile

RJE status and inquiries

remove (unlink) files

remove a delta from an SCCS file
re-ove directory

replace all occurrences of a string in a file
compare two versions of an SCCS file
stream editor

submit RJE job

set a Shell variable

Shell (command interpreter)

adjust arguments in Shell command file
suspend execution for a interval
SNOBOL interpreter

sort or merge files

space and/or indent filter

split a file into pieces

set terminal options

print checksum of a file

multi-way branch in Shell command file
change blanks into tabs

deliver the last part of a file
format tables for nroff or troff
pipe fitting

time a command

send a message in

transliterate

format text for phototypesetting
convert a text file to binary

format and type a document

find possible typographical errors
filter underlines for terminal or line printer
report repeated lines in a file
expand compressed files

change tabs into spaces

await completion of process

word count

identify files

compare file modification dates
iteration ir a Shell command file
identifies vsers currently on system
write to another user

yet anothter compiler-compiler

IS/1 Commands and Programs
(page 3 of 3)

38

e g .

b Aeaes

3.2.1.4.1 INed. INed is IS/1's interactive full screen

editor for use with Interactive's INtext II terminals. INed
provides a viewing window on the CRT screen in which all
corrections, insertions, deletions, and other text editing
functions are performed. Up to 10 viewing windows can be
created on the screen. The files in the windows may be the
sase file (for viewing different parts of file while editing)
or they may be different files. Editing functions can span
windows and files, simplifying sectioning and concatenation
of text between files. The INed screen editor is the user's
most powerful tool for both document preparation and changes.
While INed is capable of working with any type of ASCII RS232
terminal, use of the INtext II terminal pays great dividends
in terms of user function and greatly reduces CPU overheaAd.

Arbitrarily defined rectangular regions of text may be moved,
deleted, or duplicated. The user may scroll through a file,
a page or any number of 1lines at a time, up or down.
Scrolling left or right is also permitted. INed can handle a
document as long as 720 pages of text, double spaced. Longer
documents can be handled by creating multiple files.

A1l of INed's text editing features are available through the
use of function keys (labeled on the INtext terminal). This
feature speeds up the editing process by eliminating the need
to enter verbose line-oriented commands. The use ot functiocn
keys also reduces the length of time necessary for training.
Most functions are invoked by pressing a single function key.

INed provides several levels of backup that prevent the inad-
vertent destruction of text files. Por example, in the event
of a hardware malfunction, the entire editing session can be
reproduced, often without loss of a single keystroke. All
lines deleted during an editing session are saved for poten-
tial recall until the end of that session. In addition, an
original copy of every file edited is automatically saved un-
der a backup file nane.

Many system utilities can be executed directly from INed.
They can be invoked to process a line, a paragraph, or entire
file. The results replace the processed text in the file and
on the CRT so that the user can immediately view the cal-
culation or transformation. In this manner, paragraphs can
be filled or justified, columns of numbers totalled, or user
written programs accessed to perform specialized functions on
the text being displayed.

3.2.1.4,2 _ _INword. A need exists to ease the burden of sof-

tware document generation that is necessary to support the
various software projects within DMA. This capability is

39

realized by using the wvord processing system (INword) which
works closely with the 1INed screen editor to allow rapid
| formatting of documents with a minimum of CPU time. INvord
i als> works quite well for producing memos, letters, or
papers. To illustrate the use of INword, a typical document
editing session follows:

1 1. The text of the document is entered using INed.

2. The text formatting commands are placed with
the text to provide page control, centering,
and justification,

3. The ‘"proofit" command produces a "proof" file
! that can be windowed with INed to show the ap-
pecrance of the document on the printed page.

4. Using an alternate display window on the
original document, corrections are made and
step 3 is repeated. :

5. The document is printed in final form on a
hardcopy printer.

The 1INed editor itself has a number of built-in page

formatting functions and simple memos can be formatted

using only INed. Figures 3.10 and 3.11 highlight the .
features and added utilities of the word processor,

INvord.

justification of either or both margins
automatic hyphenation using a sophisticated logic program
suppression of automatic hyphenation

footnotes which can carry over to the next page if exces-
sively long

automatic page numbering at top or bottom of page
indents, permanent and temporary

underlining

conditional insertion and deletion of text
automatically numbered and positioned footnotes
automatically numbered headings

even-odd page differentiation capabilities
centering

specification of multiline headers

specification of multiline footers

" keeping a block of text or a table on a single page

specification of page 1length (if defauvlt 1length not
desired)

specification of left and right margins (if default mar-
gins not desired)

forcing the bz23ginning of a new page

extension of a particular page by a few lines

automatic widow and orphan control

single or double spacing

specification of top and/or bottom margins including mul-
tiline headers and footers (if default header or footer

not desired)

Figure 3.10 1INword Features

41

Y

dict:

diff:

comm:

grep:

proofit:

identifies possible typographical and spelling
errors by comparing all the words in the copy
with those stored in a 50,000 word dictionary.
Up to 80,000 additional words may be added to
the dictionary.

lists the differences between two files. This
will explicitly point out all of the changes
made.

finds the 1lines in common between two files.
This will aid in pointing out repetitive
information.

searches through a file or files for a par-
ticular string or pattern. This will help
locate those sections that need revision.

creates a complete formatted version of the
file exactly as it will look when it is run on
a vprinter. The original file can be accessed
whila viewing the proof file as either an al-
ternate file or a second window on the screen.

Figure 3.11 1INword Utilities

42

3.2.1.4.3 SCCS. The Source Code Control System (SCCS) is
an integrated set of commands designed to help software
% development projects control changes to source code and to

] files of text (e.g., manuals). It is equally useful for

tracking and controlling changes to other documents that are
j subject to frequent revision. It provides facilities for
storing, updating and retrieving, by version number or date,
all versions of source code modules or of documents, and for
recording who =made each change, when it was made and why.
SCCS is designed to solve many of the source code and
documentation control problems that software development
A projects encounter when customer support, system testing and
l development are all proceeding simultaneously.

Some of the main characteristics of SCCS are:

o The 2xact source code or text, as it existed at
any stage of development or maintenance, can be
recr2ated at any later time.

o All releases and versions of a source code
module or document are stored together, so that
common code or text is stored only once.

o Releases 1in production or system-test status
can be protected from unauthorized changes,

o Enouyh identifying information can be
automatically inserted into source code modules
to =2nable a user to identify the exact version
and release of any such module given only the
corresponding load module or its memory dump.

43

3.2.1.5__FAVS(RXVPBO) . The Fortran Automated Verification
System (FAVS) is a tool for analyzing source programs written
in FORTRAN or DMATRAN(IFTRAN). PAVS is currently in use at
DMA centers on UNIVAC equipment. RXVP80 is the commercial
version of FAVS and is available on the VAX. Though there
are differences between the two tools, the basic
capabilities, as outlined below, are provided by both tools.
These tools aid in improving the quality and reliability of

software by providing:
o Indented listings of source progranms.

0o Static analysis to detect inconsistencies in progranm
structure, in the use of variables, and in calling
parameters.

o) Automated documentation.
o Instrumentation of source code.
o Analysis of testing coverage.
o Retesting guidance.
With the use of FAVS or RXVP80, assistance is provided to the
user from the very early stages of implementation, through

system integration, testing, documentation, and maintenance.

Figure 3.12 illustrates the steps in validating a program
with FAVS or RXVP80.

%%lu—‘*‘—'m or RXVPS0
|

ot | comer _ comen
SYNTAX ERRORS SEMANTIC ERRORS EXECUTION ERRORS

SYNTAX STATIC EXECUTION
aLTsts ™ NALYSTS] TesTING

J ! 1

TEST RESIALTS
PROGRAN PROGAAN HO0E ERRORS .
LISTING VARIABLE SET/USE EXECUTION
PY ERRORS

UNREACHABLE CODE
DIAGNOSTICS EXTERNAL REFERENCES

.
INPUT/OUTPUT
ASSERT1OMS
.

PATH
COVERAGE
NULYSLS

—

Figure 3.12 Steps in Validating a Program with FAVS
or RXVP80O

by

(O

Figure 3.13 shows how FAVS or RXVP8B0 fits into the software
development cycle to augment software analysis and testing.
The additional features are indicated by diagonal lines. The
user's source code can be analyzed and the results will be
presented in reports which help the user decide if acceptance
criteria are being met. The tools can also instrument source
code prior to test execution and provide a test coverage
analysis of the behavior of the program during execution.

. i b . et o i

ACCEPTANCE
CRITERIA

SPECIFICATION

g

/ COVERAGE *,

/ cov
: ANAL YS/! S TESTER

DOCUMI

£PORTS l

- .
TEST TESY A\ TEST
DATA EXECUTION j RESULTS

~

SOURCE
CODE

FPigure 3.13 Software Analysis and Testing Augmented by FAVS
or RXVP80

us

PRI D

3.2.1.6 CAVS, The COBOL Automated Verification Systenm
(CAVS) is a tool for analyzing source programs vwritten in
COBOL. CAVS is an aid in improving the quality and
reliability of software by providing as a wminimum the fol-
lowing set of capabilities.

o Program analysis and error detection

o Documentation production

o Incremental updating of the Project Library
o) Instrumentation

o] Execution analysis

o Coverage assistance

o Selective application of these functions

CAVS is intended to improve the reliability of COBOL programs
by working as an aid during the coding, testing, implemen-
tation and maintenance phases of a project. Figure 3.174 jil-
lustrates the role of CAVS in developing systesms.

b6

b it

————

Eipp—]

oL SYSTEMS
SROORAMS UNDERGOING
MAINTENANCE

cosoL

ANALYZE
By —| B8
SOURCE

!

CAVS
PROJECT
LIBRARY

INSTRUMENT
SOURCE

TEST
| INSTRUMENTED
PROGRAMS

ANALYZE
CAVS
pe—gpenq TEST
COMMANDS RESULTS

S

TEXY «—a] TEST
EDITOR RESULTS
ON DISK

\ TAKE ACTION

FPigure 3. 14

/CORRECTED <

.

TAKE ACTION >

PROGRAMS

DOCUMENTATION

REFORMATTED
SOURCE

INSTALL
TESTED
PROGRAMS

—_—
TAKE ACTION /

oy
et
ES

CAVS Use in Developing Systeas

R NN,

oS oS

o~y

3.2.1.7 _ VUE, Tha VUE tool is an integrated, menu-driven
system for project planning and control. It is based on
networking techniques. VUE performs time analysis, cost
analysis, resource analysis, resource allocation, report
pracessing, including network plots, and maintenance/updating

of VUE mass storage files. Outputs include the following
reports:

o CALENDAR SPECIFICATIONS - Shows the project start date,
vhich days are in the standard work week, and lists holidays

and special work days {(up to 500 of each). Calendar span is
five years.

o NODE SCHEDULE - When VUE analyses an I-J (activity on
arrow) network, this report shows early and late occurrence
times for the nodes between activities.

0 PREDECESSOR REPORT - Reports all the predecessors of the
selected activities and the 1lag times specified (for
precedence networks).

o START AND FINISH NOL_S5 REPORT - VUE allows multiple start
and finish nodes, and these are listed in this report. Also
listed are any nodes which may be unconnected to the network.

o) RESOURCE REPORT - Resource levels for up to ten resources
may be specified for each activity. This report gives a

daily report of resource levels needed to keep the project on
schedule.

o ACTIVITY TIMES REPORT - Compares an activity's scheduled

times with its target start, target finish, and completion
times.

o) COST ACCOUNTING REPORT - Bach activity can carry up to
four separate costs, and they can be positive or negative for
credit/debit accounting. This report gives monthly subtotals
and a running total for the activities reported.

o CURRENT WORK REPORT - Lists those activities which should

be worked on during the current time window (e.g. this week,
this month).

o PROGRESS REPORT - Reports on time and behind schedule
activities.

o BAR CHART REPORT -~ Shows schedule for activities in a
graphical form. Critical activities are clearly indicated.
Bar chart scale is variable, and can either be specified by
the user or left to automatic program control.

us

f et e, R e——

o) SCHEDULE REPORT - Shows early start, early finish, late
start, late finish, and three floats for each activity.

3.2.3 General Support.

3.2.3.1_ _HYPERGRAPHICS, The HYPERGRAPHICS tool is a wmi-
crocomputer based system for the creation and delivery of
lecture material. Applications include formal presentations
and classroom training. An additional <capability is the
preparation and use of interactive lesson plans used on an

individual basis for more specialized self-paced training.

Sample features of the system are as follows:

Screen mode editor

Box, line and figure composition facilities
Color graphics embedding facility

On-line help

Dynamic delivery functions

Highlighting function for presentation emphasis
Pernanent inverse video for highlighting

Q000000

HYPERGRAPHICS is available on an APPLE II Pascal based
microcomputer. Floppy disks are used for the storage of lec-
ture material, (approximately 145 pages per diskette). 1In
classroom lectures a large screen TV may be used for display
though a smaller screen TV would be more practical for the
preparation of a la2cture. The lecture material consists of
page frames displayed in predetermined or
instructor/presentar directed order. Each page in turn con-
sists of 20 1lines of 40 characters each. Upper and lower
case character are available along with most common special
characters.

HYPERGRAPHICS operates in two modes. First the editing func-
tions are used in the creation and/or modification of lecture
material. The second set of functions are wused in the
presentation of the material. Figure 3.15 lists the twelve
compands comprising the command facility.

49

COMMAND

N
Z
P
J

(=]

O YO QON IV W

ACTION

Transfer to the next page
Transfer to page zero

Transfer to the previous page
Transfer to user selected page
Transfer to numbered reference
Execute Pascal program reference
Cycls next page sequence until key press
Reverse screen color

Activate line marker

Highlight marked line

Move marker up one line

Move marker down one 1line

Change system parameters

List page on printer

List several pages

Display commands

Edit current page

Exit program

Figure 3.15 HYPERGRAPHICS Command List

50

[

(O

L S Y

The first five commands are used most often during delivery
of a lecture. N causes the display of the page linked as the
next logical (not necessarily physical) page. The zero page
is displayed when the system 1is initialized and usually
serves as a table s5f contents for the material in the remain-
der of the file. The 2 command is used to return to page
zero from any other page. This command is particularly
useful in review situations where rapid access to different
pages is needed. As different pages are accessed, the pro-
graa keeps track of the traversal order. The P command is
used to review these previously displayed pages. The J com-
mand is used to select a page by number.

Pages can have up to ten references to other pages. These
references are usually shown on the screen as a single digit
surrounded by a single 1lined Dbox. Pressing one of the
numeric keys corresponding to a reference causes the selected
page to be presented.

Up to five Pascal program references can be made from each
page. These references are usually shown on the screen as a
single digit surrounded by a double lined box. HYPERGRAPHICS
chains to these programs sending information needed to reen-
ter the program and displaying the current page. If the
referenced program chains back to HYPERGRAPHICS, this in-
formation is used to select the proper file and page.

Normally ¢the images are displayed in black on a white
background. Some pages are easier to read with the display
colors reversed. This is accomplished by the R command. A
marker can be used to call attention to a particular line on
the screen. The 1line being marked can be highlighted by
reversing its colors.

If the system has a printer attached, hardcopy of the page
being displayed can be obtained with the L command. The ©
command is used to list a sequence of pages.

The HYPERGRAPHICS system is very easy to learn. A short ses-
sion is all that is needed to learn how to traverse pages and
use the system. During this training time, the ? command can
be used to display a complete list of the commands and their
functions. A prompt 1line that lists the possible commands
can be displayed at the bottom of the screen. This and other
system parameters can be changed by the C command. Normally
the prompt line is not displayed because it might be confused
vith the page material.

The final command, Q, is used to terminate execution of the
progranm.

51

The
netvork of pages while material is being created

normal
The

allow
page dovn,
to alter
characters,
white or white on black modes.
line. Full cursor control

to delete a line.
lines by

edit mode is entered by the E command.
full array of screan editing functions.

can

traversal functions are used to move within the

or edited.
The editor has a
The editor functions

the user to insert a blank line moving the rest of the
The editor also allows the user
inserting,

Characters can be entered

deleting or replacing
in either black on
These modes can be mixed in a
be used to move to any

location on the screen wvhile using this edit function.

Other edit functions
to 1load
is particularly useful when a
created with relatively

next.

After a
disk or disregarded.

provide
page and the other references for the page being
a copy of another page from the disk.

page has been edited,
Thus changes made during a lecture

a means of changing the next

edited and
This feature
pages is being

sequence of

minor changes from one page to the

the changes can be written to
can

be treated as temporary or permanent.

3.3 Interfaces.
using standard user interface
Since multiple VAX-11/780's

center, a standard BISYNCH

possible. The MUX/200 VAX

mupications between the VAX

DNIVAC production mainframe.
for communications amongst the
center. Descriptions of MUX
Figure 3.2.

_____ and
this specification.

Privacy.

This

specification.

Communication

This

section

links must be established
protocols or I/0 channels.
(3) are reconnended for each
protocol should be used if
system is recommended for com-
development systems and the
The DECnet LAN is recommended
VAX systems within each DMA
200 and DECnet can be found in

section does not apply to

does not to this

apply

——-————— -

SECTION 4. DESIGN DETAILS

This section does not apply to this specification.

53

&8 communications, electromagnetic. gudaucc and eon&ot sun~ - %
A ,*-,(,vuuauce of ground and aerospace obfects, mtuugmtdaa

% collection and hamw.ng, Anfonmation system Zechnology, :

R lonosphenic propagation, solid state 4umu, nucamavc

e - - & physics and electronic neliability, maintal and

& compatibility. .

